mapping

Loading report..

Highlight Samples

Regex mode off

    Rename Samples

    Click here for bulk input.

    Paste two columns of a tab-delimited table here (eg. from Excel).

    First column should be the old name, second column the new name.

    Regex mode off

      Show / Hide Samples

      Regex mode off

        Export Plots

        px
        px
        X

        Download the raw data used to create the plots in this report below:

        Note that additional data was saved in mapping_multiqc_report_data when this report was generated.


        Choose Plots

        If you use plots from MultiQC in a publication or presentation, please cite:

        MultiQC: Summarize analysis results for multiple tools and samples in a single report
        Philip Ewels, Måns Magnusson, Sverker Lundin and Max Käller
        Bioinformatics (2016)
        doi: 10.1093/bioinformatics/btw354
        PMID: 27312411

        Save Settings

        You can save the toolbox settings for this report to the browser.


        Load Settings

        Choose a saved report profile from the dropdown box below:

        About MultiQC

        This report was generated using MultiQC, version 1.9

        You can see a YouTube video describing how to use MultiQC reports here: https://youtu.be/qPbIlO_KWN0

        For more information about MultiQC, including other videos and extensive documentation, please visit http://multiqc.info

        You can report bugs, suggest improvements and find the source code for MultiQC on GitHub: https://github.com/ewels/MultiQC

        MultiQC is published in Bioinformatics:

        MultiQC: Summarize analysis results for multiple tools and samples in a single report
        Philip Ewels, Måns Magnusson, Sverker Lundin and Max Käller
        Bioinformatics (2016)
        doi: 10.1093/bioinformatics/btw354
        PMID: 27312411

        mapping

        A modular tool to aggregate results from bioinformatics analyses across many samples into a single report.

        Report generated on 2020-10-21, 12:37 based on data in:


        General Statistics

        Showing 86/86 rows and 1/2 columns.
        Sample NameM Reads Mapped
        AN_DNK_COG_EN_001
        0.0
        AN_DNK_COG_EN_002
        5.8
        AN_DNK_COG_EN_003
        0.5
        AN_DNK_COG_EN_004
        0.7
        AN_DNK_COG_EN_005
        0.1
        AN_DNK_COG_EN_006
        1.8
        AN_DNK_COG_EN_007
        0.0
        AN_DNK_COG_EN_008
        0.2
        AN_DNK_COK_EN_001
        0.2
        AN_DNK_COK_EN_002
        0.1
        AN_DNK_COK_EN_003
        0.1
        AN_DNK_COK_EN_004
        0.8
        AN_DNK_OBM_EN_001
        0.4
        AN_DNK_OBM_EN_002
        0.7
        AN_DNK_OBM_EN_003
        0.1
        AN_DNK_OBM_EN_004
        0.4
        AN_DNK_OBM_EN_005
        0.1
        AN_DNK_OBM_EN_006
        0.2
        AN_DNK_OBM_EN_007
        0.0
        AN_DNK_OBM_EN_008
        1.0
        AN_DNK_OBM_EN_009
        0.0
        AN_DNK_OBM_EN_010
        0.4
        AN_LTU_VIL_EN_001
        0.0
        AN_LTU_VIL_EN_002
        0.1
        AN_NLD_KAM_EN_001
        0.1
        AN_NLD_KAM_EN_002
        1.6
        AN_NLD_KAM_EN_003
        0.4
        AN_NLD_KAM_EN_004
        3.9
        AN_NLD_ZWO_EN_001
        2.0
        AN_NLD_ZWO_NA_002
        0.2
        MN_CHN_GUA_HS_001
        12.6
        MN_CHN_GUA_HS_002
        9.5
        MN_CHN_GUA_HS_003
        11.8
        MN_CHN_GUA_HS_004
        14.5
        MN_CHN_GUA_HS_005
        15.4
        MN_CHN_GUA_HS_006
        11.2
        MN_CHN_GUA_HS_007
        15.3
        MN_CHN_GUA_LM_008
        13.3
        MN_CHN_GUA_LM_009
        5.6
        MN_CHN_GUA_LM_010
        7.7
        MN_CMR_DJA_HS_001
        0.0
        MN_CMR_DJA_HS_002
        0.1
        MN_CMR_UNK_HS_003
        0.0
        MN_CMR_UNK_HS_004
        0.0
        MN_CMR_UNK_HS_005
        0.0
        MN_DNK_COZ_PH_001
        8.2
        MN_DNK_COZ_PH_002
        12.7
        MN_ECU_QUI_HS_001
        25.6
        MN_ECU_QUI_HS_002
        21.7
        MN_ECU_QUI_HS_004
        19.0
        MN_ECU_QUI_HS_005
        9.7
        MN_ECU_QUI_HS_006
        12.3
        MN_ECU_QUI_HS_007
        29.2
        MN_ECU_TEL_HS_001
        17.7
        MN_ECU_TEL_HS_002
        32.5
        MN_ESP_MAL_CG_001
        2.8
        MN_ESP_MAL_CG_002
        6.0
        MN_ETH_JIM_HS_001
        0.0
        MN_ETH_JIM_HS_002
        0.0
        MN_ETH_JIM_HS_003
        0.0
        MN_ETH_JIM_HS_004
        0.0
        MN_HND_OLA_HS_001
        16.8
        MN_HND_OLA_HS_002
        16.0
        MN_HND_OLA_HS_003
        7.8
        MN_HND_OLA_HS_004
        22.6
        MN_HND_OLA_HS_005
        6.1
        MN_HND_OLA_HS_006
        5.0
        MN_HND_OLA_HS_007
        5.5
        MN_HND_SAL_HS_001
        11.8
        MN_TZA_CHA_HS_001
        0.0
        MN_TZA_CHA_HS_002
        0.0
        MN_TZA_CHA_HS_003
        0.0
        MN_TZA_CHA_HS_004
        0.0
        MN_TZA_CHA_HS_005
        0.0
        MN_UGA_DK_HS_001
        26.0
        MN_UGA_DK_HS_002
        30.1
        MN_UGA_DK_HS_003
        22.6
        MN_UGA_KAB_HS_001
        23.6
        MN_UGA_KAB_HS_002
        17.2
        MN_UGA_KAB_HS_003
        8.8
        MN_UGA_KAB_HS_004
        19.0
        MN_UGA_KAB_HS_005
        23.7
        MN_UGA_KAB_HS_006
        36.5
        MN_UGA_KAB_HS_007
        25.1
        MN_UGA_KAB_HS_008
        23.8
        MN_UGA_KAB_HS_009
        15.0

        Samtools

        Samtools is a suite of programs for interacting with high-throughput sequencing data.

        Samtools Flagstat

        This module parses the output from samtools flagstat. All numbers in millions.

        loading..