Outlier SNPs enable food traceability of the southern rock lobster, Jasus edwardsii

Villacorta-Rath C, Ilyushkina I, Strugnell JM, Green BS, Murphy NP, Doyle SR, Hall NE, Robinson AJ, Bell, JJ, Marine Biology (163) :223 (2016).

Abstract

Recent advances in next-generation sequencing have enhanced the resolution of population genetic studies of non-model organisms through increased marker generation and sample throughput. Using double digest restriction site-associated DNA sequencing (ddRADseq), we investigated the population structure of the commercially important southern rock lobster, Jasus edwardsii, in Australia and New Zealand with the aim of identifying a panel of SNP markers that could be used to trace country of origin. Four ddRADseq libraries comprising a total of 88 individuals were sequenced on the Illumina MiSeq platform, and demultiplexed reads were used to create a reference catalog of loci. Individual reads were then mapped to the reference catalog, and variant calling was performed. We have characterized two single-nucleotide polymorphism (SNP) panels comprised in total of 656 SNPs. The first panel contained 535 neutral SNPs and the second, 121 outlier SNPs that were characteristic of being putatively under selection. Both neutral and outlier SNP panels showed significant differentiation between the two countries, with the outlier loci demonstrating much larger F ST values (F ST outlier SNP panel = 0.134, P < 0.0001; F ST neutral SNP panel = 0.022, P < 0.0001). Assignment tests performed with the outlier SNP panel allocated 100 % of the individuals to country of origin, demonstrating the usefulness of these markers for food traceability of J. edwardsii.

Data Availability